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1   INTRODUCTION                       
OST of the natural phenomena are usually expressed by 
nonlinear partial differential equations (PDEs). The K-
dV equation, given by 

                        𝑢t + 6𝑢𝑢x + 𝑢xxx = 0, 
where 𝑢(𝑥, 𝑡) represents unknown function, t represents the 
time, and the subscripts denote partial differentiation. This 
equation was first used in [21] to represent low-amplitude 
water wave in shallow, parochial channels such as canals (see 
[20]). Many researchers have been used different method to 
solve different types of K-dV equations for various purposes. 
Comparison of caputo and conformable derivatives for time-
fractional K-dV equation is studied in [6]. In [8], soliton 
molecules, nonlocal symmetry and CRE method of the K-dV 
equation is studied. The K-dV equation is studied for water 
waves in [10, 11]. The structure of unsteady K-dV model 
arising in shallow water has been studied in [19]. A 
comparative analysis of the fractional-order coupled K-dV 
equations with the Mittag–Leffler Law has been studied in 
[24]. Fractional forced K-dV equation is studied in [29]. A new 
localized and periodic solution to a K-dV equation with power 
law nonlinearity has been studied in [32]. N-soliton solutions 
and dynamic property analysis of a generalized three-
component Hirota-Satsuma coupled K-dV equation has been 
studied in [38]. Moreover, the K-dV equation has now been 
used to solve variety of problems of different fields including 
physics, plasma physics and engineering. It is known that 
most of the nonlinear PDEs do not have analytic solution. For 
this reason, semi-analytic or numerical solutions are used to  
solve such problems. There are many semi-analytic methods 

for the solutions of nonlinear PDEs. Among them HAM and 
HPM are the most popular. HAM was first introduced by 
Shijun Liao in [34] considering the ideas of homotopy in the 
general topology. Furthermore, a group of researchers have 
successfully employed HAM for variety of nonlinear-
problems such as: Generalized Sylvester matrix equation with 
applications is studied in [2]. In [4] two dimensional linear 
Volterra fuzzy integral equations have been studied. Non-
similar solution of Eyring–Powell fluid flow and heat transfer 
with convective boundary condition is studied in [5]. Davey-
Stewartson equations is studied in [12]. Fuzzy impulsive 
fractional differential equations have been studied in [25].  In 
[28] determining the thermal response of convective-radiative 
porous fins with temperature-dependent properties is studied. 
SIR epidemic model with Crowley-Martin type functional 

eesponse And Holling type-Ⅱ treatment rate has been studied 
in [30]. Beyond Perturbation: Introduction to the Homotopy 

Analysis Method is studied in [33]. In [35]  ),(2 yxbu   

type equations have been studied. And many other types of 
nonlinear problems are studied. 
 
The HPM is another popular semi-analytic technique for the 
solution of nonlinear PDEs. It was introduced by Ji-Huan He 
in [18] using the general concepts of homotopy in topology. 
HPM has been utilized by many researchers to solve various 
types of linear and non-linear problems, such as: 
Mathematical study of diabetes and its complication is studied 
in [1]. SIR Mumps_Model has been studied in [3]. In [7] 
nonlinear Volttra partial integro-differential equations have 
been studied. Nonlinear Schrodinger equations are studied in 
[9, 13, 14, 16]. Nonlinear Burger equations are studied in [13, 
14]. Nonlinear equations arising in heat transforms is studied 
in [13]. Fractional differential equations: part 1 Mohand 
transform is studied in [26]. In [27] nonlinear Oscillators is 
studied. Biological population model has been studied in [31]. 
In [37] inverse analysis of Jeffery-Hamel flow problem is 
studied. And many other types of nonlinear problems have 
been studied. 
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In this study, we have intended to compare the performance 
of both HAM and HPM for the K-dV equation and compare 
both the results with a suitable exact solution for different 
number of terms and different values of parameters. We have 
considered three different cases. The results show that HPM 
performs better than HAM for small values of time 𝑡, and both 
the results agreed well with the exact solution for all the three 
cases. 

2     MATHEMATICAL BACKGROUND: 

2.1  Korteweg-de Vries (K-dV) Equation: In this study we 
have considered the following K-dV equation, 

                                   𝑢t + 6𝑢𝑢x + 𝑢xxx = 0                  …  … … (a)     

with the initial approximation 𝑢 𝑥, 0 = 𝑁 𝑁 + 1 𝑠𝑒𝑐ℎ2(𝑥), 
𝑁 > 0, where 𝑢(𝑥, 𝑡) represents unknown function, t 
represents the time, and the subscripts in equation (a) denote 
partial differentiation. Considering  𝑁 = 1, 𝑢 𝑥, 0 =
𝑁 𝑁 + 1 𝑠𝑒𝑐ℎ2 𝑥   becomes  𝑢 𝑥, 0 = 2𝑠𝑒𝑐ℎ2 𝑥 . 

2.2   The Homotopy Analysis Method (HAM):  

To demonstrate the fundamental concepts of the HAM, we 
assume 

    𝒜 𝑣 𝑡  − 𝑓 𝑡 = 0,   𝑡 ∈ Ω Ω                   …  …  …  (1) 

be the usual differential equation with boundary condition 

 ℬ(𝑣,
𝜕𝑣

𝜕𝑚
) = 0, 𝑡 ∈ Г, where 𝒜 denotes the nonlinear differential 

operator, 𝑓(𝑡) denotes the known function, ℬ denotes the 
boundary operator, 𝑣(𝑡) represents the unknown function, t is 

the time, and Г denotes boundary of the region  Ω. The 
nonlinear differential operator 𝒜 can be separated into two 
parts which are    𝒜(𝑣) = ℒ(𝑣) + 𝒩(𝑣), where ℒ represents 
linear operator, and 𝒩 represents non-linear operator. 
Therefore the equation (1) can be written as follows:  
                      ℒ(𝑣) +𝒩(𝑣) − 𝑓(𝑡) = 0.                 … … …  (2) 

Using homotopy technique, for a function 

                  𝜓 ∶  Ω ×  0, 1 → ℝ,  we define a homotopy  

                 𝐻  𝜓, 𝑝 : ℝ ×  0,1 → ℝ   by 

      𝐻  𝜓 𝑡;𝑝 , 𝑝 =  1 − 𝑝   ℒ 𝜓 𝑡;𝑝  −  ℒ 𝑣0 𝑡   + 

                          𝑝[ℒ (𝜓(𝑡;𝑝)) + 𝒩(𝜓(𝑡;𝑝)) − 𝑓(𝑡)],    … … … (3) 

where  𝑝 ∈ [0, 1] is a homotopy parameter, and 𝜓 is a function 
of   𝑡 and  𝑝. 

In [33], Dr. Shijun Liao defined a new type of homotopy 
𝐻(𝜓,𝑝): ℝ × [0, 1] → ℝ by introducing a auxiliary parameter ℏ 
and a auxiliary function ℋ(𝑡) so that ℏ ≠ 0 and ℋ(𝑡)  ≠ 0 as 

𝐻 𝜓,𝑝,ℏ,ℋ =  1 − 𝑝   ℒ 𝜓 t; p ,𝑝,ℏ,ℋ 𝑡  − ℒ 𝑣0 𝑡   − 𝑝ℏ 

        ℋ(𝑡)[ℒ  𝜓 𝑡;𝑝 , 𝑝,ℏ,ℋ 𝑡  + 𝒩 𝜓 𝑡;𝑝 ,𝑝,ℏ,ℋ 𝑡  − 𝑓 𝑡 ]   

                                                                                       …  …  … (4) 

Clearly (4) is more general than (3), since (3) is the special case 

of (4) for    ℏ = −1  &  ℋ 𝑡 = 1.  i.e.,   𝐻  𝜓 𝑡,𝑝 , 𝑝 =
𝐻 ψ 𝑡,𝑝 ,𝑝,−1,1 . 

Then the deformation equation of order zero constructed by 
Liao [33] is given by 

  𝐻 𝜓 𝑡;𝑝 ;𝑝,ℏ,ℋ =  1 − 𝑝 ℒ 𝜓 𝑡;𝑝 − 𝑣0 𝑡  − 

                                               𝑝 ħ ℋ(𝑡)𝒩[𝜓 𝑡;𝑝 ],        …  …  …  (5) 

where 𝑝 denotes the homotopy parameter with 𝑝 ∈ [0, 1], ℒ 
denotes the auxiliary linear operator with the property that                  

                           ℒ(0) =  0,                                          …  …  …   (6) 

𝑣0(𝑡) denotes the initial approximate solution, and 𝒩 denotes 
the nonlinear operator which is defined as:  

𝒩 𝜓 𝑡;𝑝  = ℒ 𝜓 𝑡;𝑝  + 𝒩 𝜓 𝑡;𝑝  − 𝑓 𝑡 . 
Substituting 𝐻[𝜓(𝑡;𝑝);𝑝,ℏ,ℋ] = 0 in the equation (5) the 
zeroth order deformation equation can be written as: 

     (1 − 𝑝) ℒ 𝜓 𝑡;𝑝 − 𝑣0 𝑡  = 𝑝 ħ ℋ(𝑡)𝒩[𝜓(𝑡; 𝑝)].  …  …  (7) 

If 𝑝 = 0, then we have   
                          𝐻[𝜓(𝑡;𝑝);𝑝,ℏ,ℋ] 𝑝=0 = ℒ[𝜓(𝑡; 0) − 𝑣0(𝑡)] =  0  

 i.e., ℒ[𝜓 𝑡; 0 ] = 𝑣0(𝑡)                           …  …  …  (8) 

and if  𝑝 = 1, then we have  
                       𝐻[𝜓(𝑡;𝑝);𝑝,ℏ,ℋ] 𝑝=1= ħ ℋ(𝑡)𝒩[𝜓(𝑡;  1)]  = 0       

              i.e.,  ħ ℋ(𝑡)𝒩[𝜓(𝑡;  1)]  = 0                         …  …  …  (9) 

Now, it is clear from the equations (6), (8), and (9) that 
 𝜓 𝑡; 0 = 𝑣0 𝑡   and 𝜓(𝑡; 1) = 𝑣(𝑡). 

Therefore if the homotopy parameter 𝑝 increases from 0 to 1, 
the solution 𝜓 (𝑡;𝑝) continuously changes from 𝑣0(𝑡) to the 
solution 𝑣(𝑡) of the given equation (1). In topology, this type 
of continuous transformation is known as deformation. 
Now, differentiating equation (7) 𝑚 times w. r. to the 
homotopy parameter 𝑝, and putting  𝑝 =  0, and finally 

multiplying them by  
1

𝑚 !
, we get the deformation equation of 

order 𝑚 as follows: 

      ℒ  𝑣𝑚 𝑡 −  𝒳𝑚𝑣𝑚−1 𝑡  =  ħ ℋ 𝑡 𝐷𝑚−1 𝑣 𝑚 ,   …  …  …  (10) 

  where 𝑣 m =  {𝑣0(𝑡),𝑣1(𝑡), . . . ,𝑣𝑚(𝑡)}, 

𝐷𝑚−1( v 𝑚)  =  
1

 𝑚−1 !
   
∂𝑚−1𝒩[𝜓 𝑡 ; 𝑝 ]

∂p𝑚−1     and             

  𝒳𝑚 =  
0,      when 𝑚 ≤ 1
1,      when 𝑚 > 1

 
. 

Since 𝜓(𝑡;𝑝) depends on 𝑝 ∈ [0, 1], by Taylor’s theorem we 
have the series expansion of 𝜓(𝑡;𝑝) w. r. to  𝑝 as            

  𝜓  𝑡;𝑝 = 𝑣0 𝑡 +   𝑣𝑚 𝑡  𝑝
𝑚

+∞∞

m=1

,                                   ……… (11) 

 where 𝑣𝑚(𝑡) =  
1

𝑚 !
  
𝜕𝑚𝜓 𝑡 ; 𝑝 

𝜕𝑝𝑚
 

p=0
. 

Solving equation (10) we can find 𝑣𝑚 (𝑡). If the initial 
approximation  𝑣0(𝑡), the auxiliary linear operator ℒ, the 
auxiliary function  ℋ(𝑡) and the auxiliary parameter ħ can be 
chosen properly, then the above series (11) must be 
convergent  at 𝑝 = 1. 

Then at 𝑝 = 1 the series (11) becomes  
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𝜓 (𝑡; 1) = 𝑣0(𝑡) +   𝑣𝑚  𝑡 

+∞ ∞

m=1

 

Therefore we have 

      𝑣  𝑡 = 𝑣0 𝑡 +   𝑣𝑚 𝑡 

+∞∞

m=1

.                               ………   (12) 

In [33] Liao proved that the series (12) is one of the results of 
the given equation (1). It should be very significant to assure 
that at  𝑝 = 1, the series (11) must be convergent, on the other 
hand there is no meaning of the series (12). 

2.3   The Homotopy Perturbation Method (HPM): 

To demonstrate the fundamental concepts of the HPM, we 
consider a differential equation, which is given by  

                       𝒜 𝑢 = 𝑓 𝑟 , 𝑟 ∈  Ω,                    … … …  (13) 

together with  

                       ℬ  𝑢,
𝜕𝑢

𝜕𝑚
 = 0, 𝑟 ∈ 𝛤,                             … … …   (14) 

where 𝒜 denotes the usual differential operator, ℬ denotes the 
usual boundary operator, 𝑓(𝑟) denotes a known analytic 
function, the domain denoted by Ω, and 𝛤 denotes the 
boundary of domain Ω. 

Similar to HAM the usual differential operator 𝒜 can be 
separated into two parts as   𝒜(𝑢) =  ℒ (𝑢) + 𝒩(𝑢), where ℒ 
stands for the linear operator, and 𝒩 stands for non-linear 
operator in the given differential equation. Therefore equation 
(13) can be written as 

                          ℒ (𝑢) + 𝒩(𝑢) − 𝑓(𝑟) = 0                 … … …  (15) 

Using homotopy technique, we can define a homotopy as  
𝑤 𝑟,𝑝 : Ω ×  0, 1 → ℝ    and 𝐻(𝑤,𝑝): ℝ × [0, 1] → ℝ     
satisfying the homotopy equation:  
 

 𝐻 𝑤,𝑝 =  1 − 𝑝   ℒ 𝑤 −  ℒ 𝑢0  + 𝑝 ℒ  𝑤 + 𝒩 𝑤 − 𝑓 𝑟   

                   = 0,      𝑝 ∈ [0, 1], 𝑟 ∈  Ω,                               … ... ... (16)  

i.e., 
𝐻 𝑤,𝑝 =  ℒ 𝑤 − ℒ 𝑢0 + 𝑝 ℒ 𝑢0 + 𝑝 𝒩 𝑤 − 𝑓 𝑟  = 0, 

                       𝑝 ∈ [0, 1], 𝑟 ∈  Ω,                                      … … … (17) 

where 𝑝 ∈ [0,1] denotes a homotopy parameter and 
𝑢₀  denotes an initial approximate solution of the given 
differential equation (13) satisfying the given boundary 
conditions.  

From equation (16) and (17), we have, 

                      𝐻(𝑤, 0) = ℒ(𝑤) − ℒ(𝑢₀) = 0; 

                        𝐻(𝑤, 1) = ℒ(𝑤) +  𝒩(𝑤) − 𝑓(𝑟) = 0. 

The changing procedure of 𝑝 from 0 (zero) to 1 (unity) is only 
that 𝑤(𝑟, 𝑝) shifting from 𝑢₀(𝑟) into  𝑢(𝑟), this is said to be 
homotopy, in topology. Therefore, we have,  
        ℒ 𝑤 − ℒ 𝑢0 ≅ ℒ 𝑤 + 𝒩 𝑤 − 𝑓 𝑟 , 𝑟 ∈ Ω,  … … … (18) 

and        𝑤₀(𝑟) ≅ 𝑤(𝑟),     𝑟 ∈ Ω                              … … … (19) 

In topology, (19) is called deformation. Since 𝑤(𝑟, 𝑝) depends 
on homotopy parameter 𝑝 ∈ [0, 1],  by Taylor’s theorem we 
have the series expansion of  𝑤(𝑟;  𝑝) w. r. to 𝑝 as follows: 

              𝑤 = 𝑝0𝑤0 + 𝑝1𝑤1 + 𝑝2𝑤2 + 𝑝3𝑤3 +  ∙  ∙  ∙,    … … … (20) 
     i.e.,   

𝑤 𝑟, 𝑝 =   𝑝𝑖𝑤𝑖 𝑟 

+∞∞

i=0

. 

Consider that this series expansion (20) gives the solutions of 
the equations (16) and (17). 

Setting 𝑝 = 1 in the equation (20), we get 

                  𝑤(𝑟, 1) = 𝑤0 + 𝑤1 + 𝑤2 + 𝑤3 +  ∙  ∙  ∙ 
Therefore      

 𝑢 𝑟 = lim
𝑝→1

𝑤 𝑟,𝑝 =𝑤0 +  𝑤1 + 𝑤2 + 𝑤3 +  ∙  ∙  ∙  , 

                                                                                      … … … (21) 
    i.e.,      

                𝑢 𝑟 = lim
𝑝→1

𝑤 𝑟, 𝑝 = 𝑤𝑖 𝑟 ,

+∞∞

i=0

 

which is the solution of the given equation (13). 
 
The perturbation method coupling with the homotopy 
technique is known as the homotopy perturbation method.  
This removes the constraint of the usual perturbation method. 
However, HPM has the full amenities of the usual 
perturbation method. For most cases, the series (21) is 
convergent. 
However, to trace the rate of convergence on the non-linear 
operator, the following suggestions have been made by Dr. J- 
H. He [18]: 

a) The 
𝜕2𝒩(𝑤)

𝜕𝑤2  must be minimal so the parameter could 

be quite large, i.e.,  𝑝 → 1. 

b) The norm  ℒ−1 ∂𝒩

∂𝑤
 < 1 so that the series converges. 

 

3      NUMERICAL SCHEME OF THE K-dV EQUATION: 

3.1   Numerical Scheme by the HAM: Consider the K-dV 

equation (a) with the conferred initial approximation 

         𝑢(𝑥, 0)  = 2𝑠𝑒𝑐ℎ2(𝑥). 

Then the mth order deformation equation is  

     ℒ 𝑢𝑚 𝑥, 𝑡 − 𝒳𝑚𝑢𝑚−1 𝑥, 𝑡  = ℏℋ 𝑥, 𝑡 𝐷𝑚−1 𝒩 𝑢 𝑥, 𝑡   ,   

                                                                           … … …  (22) 

 where  ℒ(𝑢) =
∂u

∂t
 ,   𝒩 𝑢 =

𝜕𝑢

𝜕𝑡
+ 6𝑢

𝜕𝑢

𝜕𝑥
+

𝜕3𝑢  

𝜕𝑥3 ,   

        𝒳𝑚 =  
0,   when m ≤ 1 
1,   when m > 1

       and   𝑢0 = 𝑢 𝑥, 0 = 2𝑠𝑒𝑐ℎ2 𝑥 . 

Then we have,  
         (𝑢𝑚)𝑡 −𝒳𝑚(𝑢𝑚−1)𝑡 = ℏℋ𝐷𝑚−1[𝒩 𝑢(𝑥, 𝑡) ]. 

Integrating both sides from 0 to 1 with respect to  𝑡, we get,  
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𝑢𝑚 −𝒳𝑚𝑢𝑚−1 =  ℏℋ𝐷𝑚−1[𝒩 𝑢(𝑥, 𝑡) ] dt

t

0

 

   ⇒ 𝑢𝑚 = 𝒳𝑚𝑢𝑚−1 +  ℏℋ𝐷𝑚−1[𝒩 𝑢(𝑥, 𝑡) ] dt

t

0

      …  …… (23) 

Now,   𝐷𝑚−1 𝒩 𝑢(𝑥, 𝑡)  = 𝐷𝑚−1[𝑢𝑡 + 6𝑢𝑢x + 𝑢xxx ]  

  = 𝐷𝑚−1[𝑢𝑡] + 𝐷𝑚−1[6𝑢𝑢x] + 𝐷𝑚−1[𝑢xxx ]  

                =(𝑢𝑚−1)𝑡 + 6 𝑢𝑖
𝑚−1
𝑖=0 . (𝑢𝑚−1−𝑖)𝑥 + (𝑢𝑚−1)xxx , 

    where   𝐷𝑚−1[6𝑢𝑢x] = 6 ui
m−1
i=0 . (um−1−i)x . 

 
  Then the equation (23) can be written as  

     𝑢𝑚 = 𝒳𝑚𝑢𝑚−1 + ℏℋ [ 𝑢𝑚−1 𝑡 + 6  𝑢𝑖
𝑚−1

𝑖=0
. (𝑢𝑚−1−𝑖)𝑥        

t

0

+ (𝑢𝑚−1)𝑥𝑥𝑥  ] 𝑑𝑡                             …  …  …   (24) 

 

Putting 𝑚 = 1, 2, 3,⋯, respectively in the above equation (24), 
we can find  𝑢1 , 𝑢2 , 𝑢3 , ⋯ , as follows: 

    𝑢1 = −24 .  ℏ.ℋ . 𝑡. 𝑠𝑒𝑐ℎ4 𝑥 𝑡𝑎𝑛ℎ 𝑥 − 24. (ℏ.ℋ). 𝑡. 𝑠𝑒𝑐ℎ2 𝑥 .  

                       𝑡𝑎𝑛ℎ3 𝑥 .  

  𝑢2 = −24.   ℏ.ℋ +  ℏ.ℋ 2 . 𝑡. 𝑠𝑒𝑐ℎ4 𝑥 𝑡𝑎𝑛ℎ 𝑥 − 24((ℏ.ℋ) 

         + ℏ.ℋ 2). 𝑡. 𝑠𝑒𝑐ℎ2 𝑥 𝑡𝑎𝑛ℎ3 𝑥 − 25.  ℏ.ℋ 2. 𝑡2 . 𝑠𝑒𝑐ℎ8 𝑥 +  

     25 . 3 ℏ.ℋ 2. 𝑡2. 𝑠𝑒𝑐ℎ4 𝑥   𝑡𝑎𝑛ℎ4 𝑥  + 26 .  ℏ.ℋ 2 . 𝑡2. 

              𝑠𝑒𝑐ℎ2 𝑥 . 𝑡𝑎𝑛ℎ6 𝑥 . 

𝑢3. = (1 + (ℏ.ℋ)). [−24. ((ℏ.ℋ) +  ℏ.ℋ 2). 𝑡. 𝑠𝑒𝑐ℎ4 𝑥 𝑡𝑎𝑛ℎ 𝑥  

          −24 .  (ℏ.ℋ) + (ℏ.ℋ)2 . 𝑡.  𝑠𝑒𝑐ℎ2 𝑥 . 𝑡𝑎𝑛ℎ3 𝑥 − 25(ℏℋ)2.   

          𝑡2. 𝑠𝑒𝑐ℎ8 𝑥 + 25 . 3.  ℏ.ℋ 2 . 𝑡2. 𝑠𝑒𝑐ℎ4 𝑥  𝑡𝑎𝑛ℎ4 𝑥 + 26. 

           ℏ.ℋ 2. 𝑡2 . 𝑠𝑒𝑐ℎ2 𝑥 . 𝑡𝑎𝑛ℎ6 𝑥 ] + (ℏ.ℋ). [ −25 . ( ℏ.ℋ + 

            ℏ.ℋ 2). 𝑡2 . 𝑠𝑒𝑐ℎ8 𝑥 + 25. 3.   ℏ.ℋ +  ℏ.ℋ 2 . 𝑡2.     

        𝑠𝑒𝑐ℎ4 𝑥 𝑡𝑎𝑛ℎ4 𝑥 + 26 .   ℏ.ℋ +  ℏ.ℋ 2 . 𝑡2. 𝑠𝑒𝑐ℎ2 𝑥   

            𝑡𝑎𝑛ℎ6 𝑥 + 210 .  ℏ.ℋ 2.
𝑡3

3
. 𝑠𝑒𝑐ℎ10 𝑥 𝑡𝑎𝑛ℎ 𝑥 + 29. 5.       

            ℏ.ℋ 2.
𝑡3

3
. 𝑠𝑒𝑐ℎ8 𝑥 . 𝑡𝑎𝑛ℎ3 𝑥 − 29.  ℏ.ℋ 2.

𝑡3

3
. 𝑠𝑒𝑐ℎ4 𝑥   

            𝑡𝑎𝑛ℎ7 𝑥 + 29. 3. (ℏ.ℋ)2.
𝑡3

3
. 𝑠𝑒𝑐ℎ6 𝑥  𝑡𝑎𝑛ℎ5 𝑥 − 29. 

           (ℏ.ℋ)2.
𝑡3

3
. 𝑠𝑒𝑐ℎ2 𝑥  𝑡𝑎𝑛ℎ9(𝑥)]. 

𝑢4 =  1 + ℏ.ℋ .𝑢3 +  ℏ.ℋ +  ℏ.ℋ 2 .  26. (ℏ.ℋ2 + (ℏ.ℋ) . 

 𝑡2.  𝑠𝑒𝑐ℎ2 𝑥  𝑡𝑎𝑛ℎ6 𝑥 − 25.   ℏ.ℋ +  ℏ.ℋ 2 . 𝑡2.  𝑠𝑒𝑐ℎ8 𝑥 . 

+25 . 3. (ℏ.ℋ + (ℏ.ℋ)2). 𝑡2. 𝑠𝑒𝑐ℎ4 𝑥  𝑡𝑎𝑛ℎ4 𝑥 − 29.  ℏ.ℋ 2 . 

t3

3
. 𝑠𝑒𝑐ℎ10 𝑥 . 𝑡𝑎𝑛ℎ 𝑥 + 29. 5. (ℏ.ℋ)2 .

𝑡3

3
. 𝑠𝑒𝑐ℎ4 𝑥  𝑡𝑎𝑛ℎ7 𝑥  + 

211 . 3. (ℏ.ℋ)2 .
𝑡3

3
𝑠𝑒𝑐ℎ6 𝑥  𝑡𝑎𝑛ℎ5 𝑥 + 29. 5. (ℏ.ℋ)2 .

𝑡3

3
. 𝑠𝑒𝑐ℎ8 𝑥  

 𝑡𝑎𝑛ℎ3 𝑥  −  29  ℏ.ℋ 2 .
𝑡3

3
𝑠𝑒𝑐ℎ2 𝑥   𝑡𝑎𝑛ℎ9(𝑥)] −29. (  ℏ.ℋ 3 + 

 ℏ.ℋ 4)
𝑡3

3
. 𝑠𝑒𝑐ℎ2 𝑥  . 𝑡𝑎𝑛ℎ9 𝑥 + 27 . 37.   ℏ.ℋ 3 +  ℏ.ℋ 4 . 

𝑡3

3
. 𝑠𝑒𝑐ℎ10 𝑥  𝑡𝑎𝑛ℎ 𝑥 + 29 .5.   ℏ.ℋ 3 +  ℏ.ℋ 4 .

𝑡3

3
 . 𝑠𝑒𝑐ℎ8 𝑥 . 

 𝑡𝑎𝑛ℎ3 𝑥 −29. 7.   ℏ.ℋ 3 +  ℏ.ℋ 4 .
𝑡3

3
. 𝑠𝑒𝑐ℎ4 𝑥 𝑡𝑎𝑛ℎ7 𝑥 − 210  

 3.   ℏ.ℋ 3 +  ℏ.ℋ 4 .
𝑡3

3
. 𝑠𝑒𝑐ℎ6 𝑥  𝑡𝑎𝑛ℎ5 𝑥 − 212 . 3.5.  ℏ.ℋ 4 . 

𝑡4

12
. 𝑠𝑒𝑐ℎ10 𝑥  𝑡𝑎𝑛ℎ4 𝑥 − 211 . 3.  ℏ.ℋ 4 .

𝑡4

12
. 𝑠𝑒𝑐ℎ12 𝑥 . 𝑡𝑎𝑛ℎ2 𝑥  

 +  212 .  ℏ.ℋ 4.
𝑡4

12
. 𝑠𝑒𝑐ℎ14 𝑥 − 212 . 3.5.  ℏ.ℋ 4 .

𝑡4

12
𝑠𝑒𝑐ℎ6 𝑥  . 

       𝑡𝑎𝑛ℎ8 𝑥 − 212 . 52.  ℏ.ℋ 4.
𝑡4

12
. 𝑠𝑒𝑐ℎ8 𝑥  𝑡𝑎𝑛ℎ6 𝑥 − 211 . 3. 

        ℏ.ℋ 4.
𝑡4

12
. 𝑠𝑒𝑐ℎ4 𝑥  𝑡𝑎𝑛ℎ10 𝑥 + 212 .  ℏ.ℋ 4 .

𝑡4

12
. 𝑠𝑒𝑐ℎ2 𝑥 . 

          𝑡𝑎𝑛ℎ12 𝑥 . 

        ⋯   ⋯   ⋯ 

Therefore the solution series is  

 𝑢(𝑥, 𝑡) = 𝑢0 + 𝑢1 + 𝑢2 + 𝑢3 +  ⋯⋯  ⋯ 

    = 2𝑠𝑒𝑐ℎ2 𝑥 −24.  ℏ.ℋ . 𝑡. 𝑠𝑒𝑐ℎ4 𝑥 𝑡𝑎𝑛ℎ 𝑥 − 24 .  ℏ.ℋ . 𝑡. 

  𝑠𝑒𝑐ℎ2 𝑥 . 𝑡𝑎𝑛ℎ3 𝑥 −24.   ℏ.ℋ +  ℏ.ℋ 2 . 𝑡. 𝑠𝑒𝑐ℎ4 𝑥 𝑡𝑎𝑛ℎ 𝑥         

−24((ℏ.ℋ) +  ℏ.ℋ 2). 𝑡. 𝑠𝑒𝑐ℎ2 𝑥 𝑡𝑎𝑛ℎ3 𝑥 − 25 .  ℏ.ℋ 2 . 𝑡2. 

𝑠𝑒𝑐ℎ8 𝑥 +  25. 3 ℏ.ℋ 2 . 𝑡2 . 𝑠𝑒𝑐ℎ4 𝑥   𝑡𝑎𝑛ℎ4 𝑥  + 26  ℏ.ℋ 2. 𝑡2. 

 𝑠𝑒𝑐ℎ2 𝑥 . 𝑡𝑎𝑛ℎ6 𝑥 + (1 + (ℏ.ℋ)). [ − 24 .   ℏ.ℋ +  ℏ.ℋ 2 . 𝑡. 

 𝑠𝑒𝑐ℎ4 𝑥 𝑡𝑎𝑛ℎ 𝑥 − 24 .   ℏ.ℋ +  ℏ.ℋ 2 . 𝑡. 𝑠𝑒𝑐ℎ2 𝑥 . 𝑡𝑎𝑛ℎ3 𝑥  

−25.  ℏ.ℋ 2 . 𝑡2. . 𝑠𝑒𝑐ℎ8 𝑥 + 25. 3.  ℏ.ℋ 2. 𝑡2. 𝑠𝑒𝑐ℎ4 𝑥  𝑡𝑎𝑛ℎ4 𝑥  

+26 .  ℏ.ℋ 2. 𝑡2. 𝑠𝑒𝑐ℎ2 𝑥 . 𝑡𝑎𝑛ℎ6 𝑥 ] + (ℏ.ℋ). [ −25. ((ℏ.ℋ) +    

 ℏ.ℋ 2). 𝑡2. 𝑠𝑒𝑐ℎ8 𝑥 + 25 . 3.   ℏ.ℋ +  ℏ.ℋ 2 . 𝑡2 . 𝑠𝑒𝑐ℎ4 𝑥 . 

𝑡𝑎𝑛ℎ4 𝑥 + 26 .   ℏ.ℋ +  ℏ.ℋ 2 . 𝑡2. 𝑠𝑒𝑐ℎ2 𝑥 . 𝑡𝑎𝑛ℎ6 𝑥 +  210 .  

  ℏ.ℋ 2 .
𝑡3

3
 . 𝑠𝑒𝑐ℎ10 𝑥   𝑡𝑎𝑛ℎ 𝑥 + 29. 5.  ℏ.ℋ 2 .

𝑡3

3
 . 𝑠𝑒𝑐ℎ8 𝑥 . 

 𝑡𝑎𝑛ℎ3 𝑥 − 29.  ℏ.ℋ 2.
𝑡3

3
. 𝑠𝑒𝑐ℎ4 𝑥  𝑡𝑎𝑛ℎ7 𝑥 + 29. 3.  ℏ.ℋ 2.      

 
𝑡3

3
. 𝑠𝑒𝑐ℎ6 𝑥  𝑡𝑎𝑛ℎ5 𝑥 − 29.  ℏ.ℋ 2.

𝑡3

3
. 𝑠𝑒𝑐ℎ2 𝑥  𝑡𝑎𝑛ℎ9(𝑥)] +  

 1 + (ℏ.ℋ) .  𝑢3    +   ℏ.ℋ +  ℏ.ℋ 2 .  26. (ℏ.ℋ + (ℏ.ℋ)2 . t2 . 

𝑠𝑒𝑐ℎ2 𝑥   𝑡𝑎𝑛ℎ6 𝑥 − 25. (ℏ.ℋ +  ℏ.ℋ 2). 𝑡2 . 𝑠𝑒𝑐ℎ8 𝑥 + 25. 3
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(ℏ.ℋ + (ℏ.ℋ)2). 𝑡2 . 𝑠𝑒𝑐ℎ4 𝑥   𝑡𝑎𝑛ℎ4 𝑥  −  29.  ℏ.ℋ 2 .  
t3

3
 . 

𝑠𝑒𝑐ℎ10 𝑥 . 𝑡𝑎𝑛ℎ 𝑥 + 29. 5.  ℏ.ℋ 2.
t3

3
. sech4 x  tanh7 x + 211 . 3. 

(ℏ.ℋ)2.
𝑡3

3
. 𝑠𝑒𝑐ℎ6 𝑥  𝑡𝑎𝑛ℎ5 𝑥 + 29. 5. (ℏ.ℋ)2 .

𝑡3

3
. 𝑠𝑒𝑐ℎ8 𝑥  

 𝑡𝑎𝑛ℎ3 𝑥 − 29. (ℏ.ℋ)2 .
𝑡3

3
. 𝑠𝑒𝑐ℎ2 𝑥  𝑡𝑎𝑛ℎ9(𝑥)]−29. ( ℏ.ℋ 3 + 

 ℏ.ℋ 4).
𝑡3

3
. 𝑠𝑒𝑐ℎ2 𝑥  . 𝑡𝑎𝑛ℎ9 𝑥 + 27.  37.   ℏ.ℋ 3 +  ℏ.ℋ 4 .   

 
𝑡3

3
. 𝑠𝑒𝑐ℎ10 𝑥  𝑡𝑎𝑛ℎ 𝑥 + 29. 5.   ℏ.ℋ 3 +  ℏ.ℋ 4 .

𝑡3

3
. 𝑠𝑒𝑐ℎ8 𝑥 . 

 𝑡𝑎𝑛ℎ3 𝑥 −29. 7  ℏ.ℋ 3 +  ℏ.ℋ 4 .
𝑡3

3
. 𝑠𝑒𝑐ℎ4 𝑥  𝑡𝑎𝑛ℎ7 𝑥 − 210 . 

3.   ℏ.ℋ 3 +  ℏ.ℋ 4 .
𝑡3

3
. 𝑠𝑒𝑐ℎ6 𝑥  𝑡𝑎𝑛ℎ5 𝑥 − 212 . 3.5.  ℏ.ℋ 4. 

𝑡4

12
. 𝑠𝑒𝑐ℎ10 𝑥  𝑡𝑎𝑛ℎ4 𝑥 − 211 . 3.  ℏ.ℋ 4 .

𝑡4

12
. 𝑠𝑒𝑐ℎ12 𝑥 . 𝑡𝑎𝑛ℎ2 𝑥  

 +  212 .  ℏ.ℋ 4 .
𝑡4

12
.  𝑠𝑒𝑐ℎ14 𝑥  − 212 . 3.5.  ℏ.ℋ 4 .

𝑡4

12
𝑠𝑒𝑐ℎ6 𝑥  . 

𝑡𝑎𝑛ℎ8 𝑥 − 212 . 52 .  ℏ .ℋ 4 .
𝑡4

12
 .  𝑠𝑒𝑐ℎ8 𝑥  𝑡𝑎𝑛ℎ6 𝑥  − 211 . 3. 

 ℏ.ℋ 4 .
𝑡4

12
 . 𝑠𝑒𝑐ℎ4 𝑥  𝑡𝑎𝑛ℎ10 𝑥 + 212 .  ℏ.ℋ 4 .

𝑡4

12
 . 𝑠𝑒𝑐ℎ2 𝑥  

        𝑡𝑎𝑛ℎ12 𝑥 +  ⋯  ⋯  ⋯,                                           …  …  (25) 

 

3.2   Numerical Scheme by the HPM:  

For solving equation (a) by the HPM, we start by making a 
homotopy         

                𝑤:Ω × [0,1] ⟶ ℝ2  , which satisfies the homotopy 
equation 

𝐻 𝑤,𝑝 = ℒ 𝑤 − ℒ 𝑢0 + 𝑝ℒ 𝑢0 + 𝑝 𝒩 𝑤 − 𝑓(𝑥, 𝑡) = 0, 

where     ℒ =
∂

∂t
, 𝒩 𝑤 = 6𝑤𝑤x + 𝑤xxx , 𝑓 𝑥, 𝑡 = 0  &  𝑝 ∊ [0,1]. 

Then we have, 𝑤𝑡 − (𝑢0)𝑡 + 𝑝(𝑢0)𝑡 + 𝑝[6𝑤𝑤𝑥 +𝑤𝑥𝑥𝑥 ] = 0.    

                                                                           …  …  …    (26) 

Substituting the initial condition in equation (26), we have, 

      𝑤t − (2𝑠𝑒𝑐ℎ2(𝑥) )t + p(2 𝑠𝑒𝑐ℎ2(𝑥) )t + p[6𝑤𝑤x +𝑤xxx ] = 0                      

     i.e., 𝑤t − 0 + p. 0 + p[6𝑤𝑤x + 𝑤xxx ] = 0                   

    i.e., 𝑤t + p[6𝑤𝑤x + 𝑤xxx ] = 0.                    … …  …. (27) 

In equation (27), substituting 𝑤 = 𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2 + 

𝑝3𝑤3 + ⋯ , we have  

 (𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2 + 𝑝3𝑤3 +  ⋯   ) + p[6. (𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2 + 

𝑝3𝑤3 + ⋯  ).(𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2 + 𝑝3𝑤3 +  ⋯  )x + (𝑤0 + 𝑝𝑤1 +
𝑝2𝑤2 + 𝑝3𝑤3 +  ⋯  )xxx                                              .   ..  … ... (28)  

For simplification we consider 𝑢 𝑥, 0 = 𝑤(𝑥, 0) = 2𝑠𝑒𝑐ℎ2(𝑥) 

  i.e., (𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2 + 𝑝3𝑤3 + ⋯  ⋯  ⋯ ) 𝑥, 0 = 2𝑠𝑒𝑐ℎ2(𝑥). 

Which implies that  

𝑤0 𝑥, 0 = 2𝑠𝑒𝑐ℎ2 𝑥 ;  𝑤1 𝑥, 0 = 𝑤2 𝑥, 0 = 𝑤3 𝑥, 0 = ⋯ = 0. 

Now, equation (28) can be written as  

𝑝0 𝑤0 𝑡 +  𝑝1  𝑤1 𝑡  + 6𝑤0 𝑤0 𝑥 +  𝑤0 𝑥𝑥𝑥  + 𝑝2 [  𝑤2 𝑡  + 6𝑤0 . 

 𝑤1 𝑥  + 6 𝑤1  𝑤0 𝑥  +  𝑤1 𝑥𝑥𝑥 ] + 𝑝3 [ 𝑤3 𝑡 + 6 𝑤2 𝑤0 𝑥  + 6 𝑤1 . 

 𝑤1 𝑥  + 6 𝑤0  𝑤2 𝑥 +  𝑤2 𝑥𝑥𝑥 ]  +  ⋯   ⋯   ⋯   +  𝑝𝑛  [ 𝑤𝑛 𝑡  + 6. 

     wi
𝑛−1
𝑖=0  wn−1−i x +  𝑤𝑛−1 𝑥𝑥𝑥 + ⋯  ⋯  ⋯ = 0.  

This equation can be represented as: 

  𝑝0:  (𝑤0)𝑡 = 0;    𝑤0 𝑥, 0 = 2𝑠𝑒𝑐ℎ2 𝑥 , 

  𝑝1:   𝑤1 𝑡 + 6𝑤0 𝑤0 𝑥 +  𝑤0 𝑥𝑥𝑥 = 0;   𝑤1 𝑥, 0 = 0, 

  𝑝2:   𝑤2 𝑡 + 6𝑤0 𝑤1 𝑥 + 6𝑤1 𝑤0 𝑥 +  𝑤1 𝑥𝑥𝑥 = 0; 𝑤2 𝑥, 0 = 0, 

 𝑝3:   𝑤3 𝑡 + 6𝑤0  𝑤2 𝑥 + 6𝑤1  𝑤1 𝑥 + 6𝑤2   𝑤0 𝑥 +  𝑤2 𝑥𝑥𝑥 = 0;      
                                                𝑤3 𝑥, 0 = 0, 

   ⋮ 

  𝑝𝑛 :   𝑤𝑛 𝑡 + 6. wi
𝑛−1
𝑖=0  wn−1−i x +  𝑤𝑛−1 𝑥𝑥𝑥 = 0; 𝑤𝑛 𝑥, 0 = 0, 

    ⋮ 

Solving the above equation we can find  𝑤0 , 𝑤1 ,𝑤2 ,𝑤3 , ⋯ , as 
follows: 

    𝑤0 = 2𝑠𝑒𝑐ℎ2 𝑥 ; 

    𝑤1 = 24. 𝑡. 𝑠𝑒𝑐ℎ4 𝑥 . 𝑡𝑎𝑛ℎ 𝑥 + 24. 𝑡. 𝑠𝑒𝑐ℎ2 𝑥 . 𝑡𝑎𝑛ℎ3 𝑥 ; 

    𝑤2 = 25 . 3. 𝑡2. 𝑠𝑒𝑐ℎ4 𝑥 . 𝑡𝑎𝑛ℎ4 𝑥 − 25 . 𝑡2. 𝑠𝑒𝑐ℎ8 𝑥 + 26. 𝑡2. 

                 𝑠𝑒𝑐ℎ2 𝑥 . 𝑡𝑎𝑛ℎ6 𝑥 ; 

    𝑤3 = −29. 5.
𝑡3

3
. 𝑠𝑒𝑐ℎ8 𝑥 . 𝑡𝑎𝑛ℎ3 𝑥 − 210 .

𝑡3

3
. 𝑠𝑒𝑐ℎ10 𝑥 . 

               𝑡𝑎𝑛ℎ 𝑥 + 29.
𝑡3

3
. 𝑠𝑒𝑐ℎ4 𝑥 . 𝑡𝑎𝑛ℎ7 𝑥 − 29. 3.

𝑡3

3
. 

              𝑠𝑒𝑐ℎ6 𝑥 . 𝑡𝑎𝑛ℎ5 𝑥 + 29.
𝑡3

3
. 𝑠𝑒𝑐ℎ2 𝑥 . 𝑡𝑎𝑛ℎ9 𝑥 ; 

    𝑤4 = −212 . 3.5.
t4

12
. sech10 x  tanh4 x − 211 . 3.

t4

12
. sech12 x . 

     𝑡𝑎𝑛ℎ2 𝑥 + 212 .
𝑡4

12
. 𝑠𝑒𝑐ℎ14 𝑥 −  212 . 3.5.

𝑡4

12
. 𝑠𝑒𝑐ℎ6 𝑥 . 

   𝑡𝑎𝑛ℎ8 𝑥 − 212 . 52.
𝑡4

12
. 𝑠𝑒𝑐ℎ8 𝑥  𝑡𝑎𝑛ℎ6 𝑥 − 211 . 3.

𝑡4

12
. 

𝑠𝑒𝑐ℎ4 𝑥  𝑡𝑎𝑛ℎ10 𝑥 + 212 .
𝑡4

12
. 𝑠𝑒𝑐ℎ2 𝑥  𝑡𝑎𝑛ℎ12 𝑥 ; 

                 ⋯  ⋯  ⋯ 

As a result, the solution series becomes 

 𝑢(𝑥, 𝑡) = lim
p→1

𝑤(𝑥, 𝑡, 𝑝) = 𝑤0 + 𝑤1 + 𝑤2 + 𝑤3 +  ⋯⋯  ⋯ 

 = 2𝑠𝑒𝑐ℎ2 𝑥 + 24 𝑡 𝑠𝑒𝑐ℎ4 𝑥 𝑡𝑎𝑛ℎ 𝑥 + 24. 𝑡 𝑠𝑒𝑐ℎ2 𝑥  𝑡𝑎𝑛ℎ3 𝑥  

    + 25 . 3. 𝑡2 . 𝑠𝑒𝑐ℎ4 𝑥 .  𝑡𝑎𝑛ℎ4 𝑥  −  25. 𝑡2.  𝑠𝑒𝑐ℎ8 𝑥   + 26 . 𝑡2 . 
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   𝑠𝑒𝑐ℎ2 𝑥 .  𝑡𝑎𝑛ℎ6 𝑥  − 29. 5.  
𝑡3

3
. 𝑠𝑒𝑐ℎ8 𝑥 .  𝑡𝑎𝑛ℎ3 𝑥 − 210 .

𝑡3

3
.  

𝑠𝑒𝑐ℎ10 x . tanh(x) + 29.
𝑡3

3
. 𝑠𝑒𝑐ℎ4 𝑥 . 𝑡𝑎𝑛ℎ7 𝑥 − 29. 3.

𝑡3

3
.

    𝑠𝑒𝑐ℎ6 𝑥  . 𝑡𝑎𝑛ℎ5 𝑥  + 29.
𝑡3

3
.  𝑠𝑒𝑐ℎ2 𝑥 .  𝑡𝑎𝑛ℎ9 𝑥  − 212 . 3.5. 

 
𝑡4

12
. 𝑠𝑒𝑐ℎ10 𝑥  𝑡𝑎𝑛ℎ4 𝑥 − 211 . 3

𝑡4

12
𝑠𝑒𝑐ℎ12 𝑥 . 𝑡𝑎𝑛ℎ2 𝑥 + 212 .

𝑡4

12
 

𝑠𝑒𝑐ℎ14 𝑥 − 212 . 3.5
t4

12
𝑠𝑒𝑐ℎ6 𝑥  𝑡𝑎𝑛ℎ8 𝑥 − 212 . 52 .

t4

12
. 𝑠𝑒𝑐ℎ8 𝑥  

. 𝑡𝑎𝑛ℎ6 𝑥 − 211 . 3.  
t4

12
.  𝑠𝑒𝑐ℎ4 𝑥  𝑡𝑎𝑛ℎ10 𝑥 + 212 .  

𝑡4

12
 𝑠𝑒𝑐ℎ2 𝑥 . 

 𝑡𝑎𝑛ℎ12 𝑥  +  ⋯  ⋯  ⋯                                                     … … … (29) 

 

4   RESULTS AND DISCUSSION: 

We have computed the results of the K-dV equation by both 
HAM and HPM using our MATLAB routine and have 
compared the results with the exact solution in the 
interval   −5, 5 .  In this case we have considered 𝑐 = 4 in the 
exact solution  

  𝑢 𝑥, 𝑡 =
𝑐

2
 𝑠𝑒𝑐ℎ2(

 𝑐

2
  𝑥 − 𝑐𝑡 )     … … … (b). 

It is to be noted here that we have considered three cases for 
both HAM and HPM. Case-I is with three terms 𝑢0 ,   𝑢1 ,   𝑢2 for 
HAM, and 𝑤0 ,   𝑤1 ,   𝑤2 for HPM. Case-II is with four terms 
𝑢0 ,   𝑢1 ,   𝑢2 ,   𝑢3 for HAM, and 𝑤0 ,  𝑤1 ,  𝑤2 ,  𝑤3 for HPM. And 
Case-III is with five terms 𝑢0 ,  𝑢1 , 𝑢2 ,  𝑢3 , 𝑢4  for HAM, and 
𝑤0 ,   𝑤1 ,   𝑤2 ,   𝑤3 ,   𝑤4 for HPM.  

4.1   DISCUSSION OF THE NUMERICAL RESULTS: 

 

 

 

Figs. 2, 3, 5, and 6 show that for  ℋ,ℏ =  −1, 0.5 ,   −1,−0.5 ,

 −1, 0.25 ,  −0.5,−1 ,  −0.5,−0.5 ,  −0.5 , 0.5 ,  −0.5, 1 ,

 −0.25,−1 ,  −0.25, 1 ,  0.5,−1 ,  0.5,−0.5  0.5, 0.5 ,  0.5, 1 ,  

  1,−0.5 ,  1, 0.25  and  1, 0.5 , HAM gives better solution for 

large values of time 𝑡 where as HPM gives more accurate 

results for small values of 𝑡 and results from both HAM and 

HPM agree well with the exact solution (b) for all the three 

cases.  

Fig. 4 shows that for  ℋ,ℏ =  −1,−1 ,  1, 1 ,  −2,−
1

2
 , 

  
1

2
, 2 ,  3,

1

3
 ,  and  −

1

3
,−3  HPM solution is more accurate 

than HAM for all values of 𝑡 for all the three cases. It is to be 

noted here that for small values of 𝑡 results from both HAM 

and HPM agree well with the exact solution (b) for all the 

three cases. 

 

4.2    ERROR ANALYSIS:   

Using our MATLAB routine, we have been computed 𝑙2-errors 
of the solution of K-dV equation (a) obtained by both HAM 
and HPM for all the three cases in different values of time 𝑡 
using the exact solution (b) and the error formula, error 

=   (𝑓𝑒 𝑥𝑖 − 𝑓𝑐 𝑥𝑖 )
2𝑛

𝑖=1 , where 𝑓e , 𝑓c  are exact and computed 
solutions, respectively. The results represented in Table 
(1 − 6). The results show that for smaller values of time 𝑡 the 
error decreases. For all the cases HPM has minimum error for 
very small values of time 𝑡.  

 

            

 

 

 

    

   

   

          

 

 

  

  

Fig. 1 shows that for the product of auxiliary parameter(ℏ) 

and auxiliary function(ℋ(t)) equal to-1, i.e., ℏℋ = −1, the 

solution of the K-dV equation (a) obtained by HAM coincides 

with the solution obtained by HPM and both solutions agree 

with the exact solution (b) for all the three cases. 
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Fig. 1: 1st, 2nd and 3rd columns represent the exact solution, HAM solution and HPM solution of the K-dV equation for Case-I, Case-

II and Case-III, respectively with regard to the values  ℋ,ℏ =  −1 ,1 ,  1,−1 ,  −2,
1

2
 ,  −

1

2
, 2 ,  3,−

1

3
 , and  

1

3
,−3  in HAM. 
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Fig. 2: 1st, 2nd and 3rd columns represent the exact solution, HAM solution and HPM solution of the K-dV equation for Case-I, 
Case-II and Case-III, respectively with regard to the values  ℋ,ℏ =  −1 , 0.5 ,  1,−0.5 ,  0.5,−1 , and (−0.5, 1) in HAM. 
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Tab.4.2: Error table for ℋ = 1 & ℏ = 1, and for different time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3: 1st, 2nd and 3rd columns represent the exact solution, HAM solution and HPM solution of the K-dV equation for Case-I, 
Case-II and Case-III, respectively with regard to the values  ℋ,ℏ =  −1 ,−0.5 ,  −0.5,−1 ,  1, 0.5 , and  0.5, 1  in HAM. 
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Fig. 4: 1st, 2nd and 3rd columns represent the exact solution, HAM solution and HPM solution of the K-dV equation for Case-I, 

Case-II and Case-III, respectively with regard to the values  ℋ,ℏ =  −1 ,−1 ,  1, 1 ,  −2,−
1

2
 ,  

1

2
, 2 ,  3,

1

3
 , and  −

1

3
,−3  in HAM. 
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Fig. 5: 1st, 2nd and 3rd columns represent the exact solution, HAM solution and HPM solution of the K-dV equation for Case-I, 
Case-II and Case-III, respectively with regard to the values  ℋ,ℏ =  −0.5, 0.5  ,  0.5,−0.5 ,  −1, 0.25 , and  −0.25, 1  in HAM. 
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 Fig. 6: 1st, 2nd and 3rd columns represent the exact solution, HAM solution and HPM solution of the K-dV equation for Case-I, 

Case-II and Case-III, respectively with regard to the values  ℋ,ℏ =  −0.5,−0.5 ,  0.5, 0.5 ,  1, 0.25 , and  −0.25,−1  in HAM. 
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TABLE 2 

The 𝑙2-error for HAM and HPM solution for all the three 

cases for the values  ℋ,ℏ =  −1 , 0.5 ,  1,−0.5 , 

 0.5,−1 , and (−0.5, 1) considered in HAM. 

 
Time  t Method Case-I Case-II Case-III 

2
0 HAM 19.862446963 33.769828542 70.544316243 

HPM 62.718199989 193.753896419 577.584811761 

2
−1 HAM 7.061387460 7.276843876 8.137547253 

HPM 14.841161323 22.282477407 32.612810041 

2
−2 HAM 2.200176138 1.621499716 1.058254270 

HPM 2.631481915 1.973099259 1.438693389 

2
−3 HAM 0.744438007 0.441997160 0.253230788 

HPM 0.369167277 0.138889796 0.050721759 

2
−4 HAM 0.311492307 0.165048927 0.089137213 

HPM 0.047605331 0.008966728 0.001638531 

2
−5 HAM 0.147264288 0.074827306 0.038415451 

HPM 0.005998090 0.000565086 0.000005164 

2
−6 HAM 0.072537104 0.036419152 0.018341876 

HPM 0.000751258 0.000035392 0.000000005 

2
−7 HAM 0.036130509 0.018084119 0.009058835 

HPM 0.000093954 0.000002213 0.000000000 

 

TABLE 3 

The 𝑙2-error for HAM and HPM solution for all the three 
cases for the values   ℋ,ℏ =  −1 ,−0.5 ,  1, 0.5 ,  0.5, 1 , 
and (−0.5,−1) considered in HAM. 

Time t Method Case-I Case-II Case-III 

2
0 HAM 27.284422088 67.810320782 196.506643920 

HPM 62.718199989 193.753896419 577.584811761 

2
−1 HAM 14.163199159 25.303782693 46.794994445 

HPM 14.841161323 22.282577407 32.612810041 

2
−2 HAM 8.954242418 13.791224761 21.410765669 

HPM 2.631481915 1.973099259 1.438693389 

2
−3 HAM 4.984952844 7.508981031 11.326092940 

HPM 0.369167277 0.138889796 0.050721759 

2
−4 HAM 2.570545445 3.859229076 5.795564534 

HPM 0.047605331 0.008966728 0.001638531 

2
−5 HAM 1.295560069 1.943748812 2.916426582 

HPM 0.005998090 0.000565086 0.000005164 

2
−6 HAM 0.649083119 0.973675208 1.460612067 

HPM 0.000751258 0.000035392 0.000000162 

2
−7 HAM 0.324704987 0.487063779 0.730608039 

HPM 0.000093954 0.000002213 0.000000005 

2
−8 HAM 0.162372939 0.243560195 0.365341838 

HPM 0.000011746 0.000000138 0.000000000 

2
−9 HAM 0.081189026 0.121783637 0.1826756483 

HPM 0.000001468 0.000000009 0.0000000000 

TABLE 4 

The 𝑙2-error for HAM and HPM solution for all the three 

cases for the values  ℋ,ℏ =  −1 ,−1 ,  1, 1 ,  −2,−
1

2
 ,  

1

2
, 2 ,  

 3,
1

3
 , and  −

1

3
,−3   considered in HAM. 

Time t Method Case-I Case-II Case-III 

2
0 HAM 81.739945215 339.130355542 1839.752583995 

HPM 62.718199989 193.753896419 577.584811761 

2
−1 HAM 32.151611344 91.105747660 288.842157676 

HPM 14.841161323 22.282477407 32.612810041 

2
−2 HAM 16.899705653 37.326398737 83.363702134 

HPM 2.631481915 1.973099259 1.438693389 

2
−3 HAM 8.984843690 18.393021229 37.582020926 

HPM 0.369167277 0.1388897959 0.050721759 

2
−4 HAM 4.585151957 9.222230737 18.532962159 

HPM 0.047605331 0.008966728 0.001638531 

2
−5 HAM 2.305127771 4.616711291 9.244127321 

HPM 0.005998090 0.000565086 0.000005164 

2
−6 HAM 1.154164220 2.309134279 4.619595362 

HPM 0.000751258 0.000035392 0.000000162 

2
−7 HAM 0.577283143 1.154666980 2.309499457 

HPM 0.000093954 0.000002213 0.000000005 

2
−8 HAM 0.288666731 0.577346049 1.154712774 

HPM 0.000011757 0.000000138 0.000000000 

 

 

TABLE 1 

The 𝑙2-error for HAM and HPM solution for all the three 

cases for the values ℋ,ℏ =  −1 ,1 ,  1,−1 ,  −2,
1

2
 , 

 −
1

2
, 2 ,  3,−

1

3
 , and  

1

3
,−3  considered in HAM. 

 
Time t Method Case-I Case-II Case-III 

2
0 HAM 62.718199989 193.753896419 577.584811761 

HPM 62.718199989 193.753896419 577.584811761 

2
−1 HAM 14.841161323 22.282477407 32.612810041 

HPM 14.841161323 22.282477407 32.612810041 

2
−2 HAM 2.631481915 1.973099259 1.438693389 

HPM 2.631481915 1.973099259 1.438693389 

2
−3 HAM 0.369167277 0.138889796 0.050721759 

HPM 0.369167277 0.138889796 0.050721759 

2
−4 HAM 0.047605331 0.008966728 0.001638531 

HPM 0.047605331 0.008966728 0.001638531 

2
−5 HAM 0.005998090 0.000565086 0.000005164 

HPM 0.005998090 0.000565086 0.000005164 

2
−6 HAM 0.000751258 0.000035392 0.000000005 

HPM 0.000751258 0.000035392 0.000000005 
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6    CONCLUSION: 

In this study, both HAM and HPM have been applied to solve 

the K-dV equation (a) and compared all the results obtained 

by these two methods with exact solution (b). From Fig. 1 and 

Table 1 we see that the HAM and HPM solution coincide 

when the values of ℋ and ℏ are taken in such a way that 

ℋℏ = −1. For the other setting the HPM gives better results 

than HAM because the initial approximation is chosen 

properly. We hope the study will be helpful for further studies 

of HAM and HPM for other differential equations.  
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